Search results for "graphitic carbon nitride"
showing 10 items of 11 documents
EPR investigations of polymeric and H2O2 -modified C3N4 -based photocatalysts
2019
The C3N4 -based nanopowders prepared by thermal condensation of melamine (MCN) with subsequent thermal etching (MCN-TE) and H2O2 -treatment were investigated by Q- and X-band EPR spectroscopy in dark and upon in situ UVA or visible-light exposure. Lorentzian signal at g = 2.003, more pronounced in the case of the thermally etched material, dominates EPR spectra of MCN and MCN-TE. More complex spectra were found for H2O2 -treated photocatalysts revealing the presence of signals attributed to the radicals produced via H2O2 interaction with C/N sites in the C3N4 polymeric network. The X-band spectra monitored upon in situ irradiation of the C3N4 -based photocatalysts evidenced the intensity gr…
Photocatalytic degradation of 4-Nitrophenol by g-C3N4-MCy: Mechanism study and kinetic modeling
2021
Abstract A graphitic carbon nitride (g-C3N4-MCy) photocatalyst was prepared by thermal condensation of melamine and cyanuric acid with equal proportions. The photocatalyst was characterized by Fourier transform infrared spectroscopy (FTIR), Specific surface area (SSA), X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), Transmission electron microscope (TEM), and DRS–UV–Vis spectroscopic methods. We studied the photo-degradation kinetics of 4-nitrophenol using a g-C3N4-MCy. Four parameters were applied including initial concentration of 4-nitrophenol, amount of catalyst, dissolved oxygen content, and photon flux. The reaction rate constant was shown to be correlate…
Emerging photocatalytic applications of graphitic carbon nitride
2016
Graphitic carbon nitride assisted partial photocatalytic oxidation of the biomass platform molecule 5-hydroxymethyl-2-furfural (HMF) in aqueous medium was investigated. Different carbon nitride precursors were considered, being melamine the one yielding the most efficient photocatalyst The thermal exfoliation procedure of g-C3N4 gave rise to exfoliated samples with higher specific surface areas that also showed both an enhanced photocatalytic activity in conversion of HMF, and selectivity (ca. 42-45 %) towards FDC. The utilization of radical scavengers revealed that superoxide radicals were the main reactive species responsible for HMF oxidation to FDC. The use of natural solar light result…
Pd nanoparticles immobilized on the poly-dopamine decorated halloysite nanotubes hybridized with N-doped porous carbon monolayer: A versatile catalys…
2020
A hybrid catalyst, Pd@Hal-pDA-NPC, with the utility for promoting both C–C coupling reactions (Sonogashira, Heck and Suzuki reactions) and hydrogenation of nitrocompounds is prepared through two main steps. First, Pd(0) nanoparticles was immobilized on the poly-dopamine decorated halloysite nanotubes (Hal-pDA) and then Pd@Hal-pDA was hybridized with the layers of a novel multi-N-doped porous carbon monolayer derived from 4,4′,4″-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tribenzonitrile. The results established that the catalyst could catalyze all the reactions efficiently under mild reaction condition. Moreover Pd@Hal-pDA-NPC exhibited high recyclability (up to ten reac…
Carbon nitride as photocatalyst in organic selective transformations
2020
Abstract Graphitic carbon nitride (g-C3N4) is a metal-free conjugated polymer which has become a new research hotspot in photocatalysis. It can be used for solar energy exploitation like in solar energy organic synthesis, one of the most new and appealing green applications of heterogeneous photocatalysis. This chapter resumes the state-of-the-art and progresses in the application of heterogeneous visible light photocatalysis in organic selective transformations by using C3N4 as photocatalyst.
Bifunctional Z-Scheme Ag/AgVO3/g-C3N4 photocatalysts for expired ciprofloxacin degradation and hydrogen production from natural rainwater without usi…
2020
Abstract To maximize the employment of sustainable solar energy in treating the recalcitrant pollutant and hydrogen energy production, the development of a highly efficient photocatalyst is desirable. Herein, a Z-scheme Ag/AgVO3/g-C3N4 photocatalyst was synthesized via a wet-impregnation method. The amount of Ag/AgVO3 deposited onto g-C3N4 has a significant effect on the photocharge carrier separation and migration of the as-developed Z-scheme photocatalyst. It was found that 0.5 wt % Ag/AgVO3/g-C3N4 photocatalyst exhibited a profound photocatalytic degradation performance with 82.6% ciprofloxacin removal and 3.57 mmol/h of hydrogen produced from natural rainwater under visible-light irradi…
An Investigation into the Stability of Graphitic C 3 N 4 as a Photocatalyst for CO 2 Reduction
2018
The increasing CO 2 concentration in the atmosphere exerts a significant influence on global warming and climate change. The capture and utilization of CO 2 by conversion to useful products is an area of active research. In this work, the photodriven reduction of CO 2 was investigated using graphitic carbon nitride (g-C 3 N 4 ) as a potential photocatalyst. The photocatalytic reduction of CO 2 was investigated with g-C 3 N 4 powder immobilized on a glass support in a batch gas-phase photoreactor. The experiments were carried out under UV-vis irradiation at 70 °C and an initial pressure of 2.5 bar. The only gas-phase product detected during the irradiation of the g-C 3 N 4 in the presence of…
TiO2 Nanoparticles Functionalized with Non-innocent Ligands Allow Oxidative Photocyanation of Amines with Visible/Near-Infrared Photons
2018
Photosynthesis is an efficient mechanism for converting solar light energy into chemical energy. We report on a strategy for the aerobic photocyanation of tertiary amines with visible and near-infrared (NIR) light. Panchromatic sensitization was achieved by functionalizing TiO2 with a 2-methylisoquinolinium chromophore, which captures essential features of the extended π-system of 2,7-diazapyrenium (DAP2+) dications or graphitic carbon nitride. Two phenolic hydroxy groups make this ligand highly redox-active and allow for efficient surface binding and enhanced electron transfer to the TiO2 surface. Non-innocent ligands have energetically accessible levels that allow redox reactions to chang…
Selective photocatalytic oxidation of 5-hydroxymethyl-2-furfural to 2,5-furandicarboxyaldehyde in aqueous suspension of g-C3N4
2017
Graphitic carbon nitride assisted partial photocatalytic oxidation of 5-hydroxymethyl-2-furfural (HMF) in aqueous medium was investigated. Different carbon nitride precursors were considered, being melamine the one yielding the most efficient photocatalyst. The obtained 30% selectivity of HMF oxidation to 2,5-furandicarboxaldehyde (FDC) is higher than those reported up to now. A further thermal exfoliation of the g-C3N4 samples showed under artificial light irradiation both an enhanced photocatalytic activity in conversion of HMF, and selectivity (ca. 42–45%) to FDC. The performance of the catalysts increased when the experiments were carried out under real outdoor illumination, reaching 50…
Selective photocatalytic oxidation of aromatic alcohols in water by using P-doped g-C3N4
2018
A set of bare and P-doped graphitic carbon nitride (g-C3N4) photocatalysts has been prepared by thermal condensation of melamine, urea or thiourea. For the sake of comparison, a g-C3N4 sample obtained in the presence of cyanuric acid and thermally exfoliated C3N4 powders were also studied. The materials were physicochemically characterized and their photocatalytic activity was studied for the selective oxidation of benzyl alcohol (BA), 4-methoxy benzyl alcohol (4-MBA) and piperonyl alcohol (PA) in water suspension both under UV and visible light irradiation. The influence of the type and position of the substituents on conversion and selectivity to aldehyde was remarkable. The presence of P…